Thursday, July 31, 2025

AI: Chinese "open" models for coding ?

problems like "solving Rubik's cube" is by now "known challenge" that AI models are trained to solve.

Even more, there are complete working solutions available on web now, 
that AI model could be made to "memorize" during training. 

Not to say those models are not good, but that measuring AI is hard.

Also, what other things, in particular bad things, such models may generate?
Inspecting generated code is becoming an after-thought at best now... Big risk.

And videos like this are "click magnet," much to do about nothing.

Chinese Open-Source DOMINATES Coding (GLM-4.5) - YouTube 
by Matthew Berman - YouTube

Links: 


HubSpot's Free Guide to Models, Prompts and Must-Try GPTs: https://clickhubspot.com/93cca2

WebGL: react-weather-effects: rain, snow, fog

 GitHub - rauschermate/react-weather-effects: Animated weather effects (rain, snow, fog) on any background image

A beautiful, interactive weather effects demo built with React, Next.js, WebGL, and Three.js. Experience realistic rain, snow, and fog scenes, each with unique visual effects and controls.



Tuesday, July 29, 2025

Tesla-Samsung $16.5 billion for AI chips

good deal

Tesla-Samsung $16.5 billion supply deal may spur chipmaker's US contract business | Reuters

Tesla (TSLA.O), opens new tab has signed a $16.5 billion deal to source chips from Samsung Electronics (005930.KS), opens new tab, a move that could bolster the South Korean tech giant's unprofitable contract business but is unlikely to help Tesla sell more EVs or roll out robotaxis more quickly.
Tesla CEO Elon Musk said late on Sunday that Samsung's new chip factory in Taylor, Texas would make Tesla's next-generation AI6 chip. This could re-energize Samsung's project, which has faced long delays because the company had trouble retaining and attracting major clients.


CGI web server apps: GoLang, Rust, C

When WWW and HTTP was first created, 30+ years ago,
the way to integrate web server apps with other tools was to "spawn" a new process each time with CGI interface. That was not very efficient, but was universal and simple. 

The alternative was to embed handling on HTTP/TCP sockets directly in the web server.
That is how most of web server apps work now.

But apparently due to Go efficient and compact compiled programs,
CGI can still be efficient, even now, same as was C/C++ a while ago.

Serving 200 million requests per day with a cgi-bin | Jake Gold

Jacob2161/cgi-bin @GitHub: GoLang


Serving a half billion requests per day with Rust + CGI | Jake Gold

strangely enough, C is still the fastest option!

the old is good again, in part thanks to CPU HW improvements






Sunday, July 27, 2025

Google AI: AlphaEvolve: A coding agent for scientific and algorithmic discovery

Demis Hassabis: Future of AI, Simulating Reality, Physics and Video Games | Lex Fridman Podcast #475 - YouTube

30:52 - AlphaEvolve

AlphaEvolve.pdf

AlphaEvolve, an evolutionary coding agent that substantially enhances capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve iteratively improves the algorithm, potentially leading to new scientific and practical discoveries


The MANIAC (book): https://amzn.to/4lOXJ81

Life Ascending (book): https://amzn.to/3AhUP7z
 

Demis's X: https://x.com/demishassabis

DeepMind's X: https://x.com/GoogleDeepMind
DeepMind's Instagram: / googledeepmind

DeepMind's Website: https://deepmind.google/

Gemini's Website: https://gemini.google.com/

Isomorphic Labs: https://isomorphiclabs.com/


business story: Google

another great story, from Acquired podcast

 Google: The Complete History and Strategy


BackRub recreation


Saturday, July 26, 2025

new: Tesla Model YL, mini, founder story

New Tesla Model YL Is China-Only 3-Row Tesla We’ve Been Waiting For | Cars.com

Cheaper RWD Tesla Model Y Goes on Sale | Cars.com


the new Model YL is slightly longer, ~180mm or 7 inches longer, and 24mm or about an inch taller.

 

NEW Tesla Model Y “L” Brings Premium Luxury Interior Seating Upgrades | This Changes Everything - YouTube  The Electric Viking - YouTube

Winning the AI Race

Rare-earths, NVIDIA, AMD, MP Materials, Crusoe

Winning the AI Race Part 3: Jensen Huang, Lisa Su, James Litinsky, Chase Lochmiller - YouTube
All-In Podcast - YouTube

Winning the AI Race Part 2: Vice President JD Vance - YouTube

Winning the AI Race Part 1: Michael Kratsios, Kelly Loeffler, Shyam Sankar, Chris Power - YouTube

Winning the AI Race Part 4: Scott Bessent, Howard Lutnick, Chris Wright, and Doug Burgum - YouTube

Winning the AI Race Part 5: President Trump on the AI Action Plan - YouTube


Windows Sound Volume Mixer

Adjusting volume for each app, is easy, but not obvious on Windows.

The keyword is "Volume Mixer",
from start menu or from context (right mouse click) menu on sound (speaker icon)

The Windows 11 Volume Mixer: All you need to know! - Digital Citizen


audio - Volume mixing Windows 8 Metro apps - Super User



pgsqlite: SQLite like PostgreSQL

 GitHub - erans/pgsqlite: A PostgreSQL protocol adapter for SQLite databases. This project allows PostgreSQL clients to connect to and query SQLite databases using the PostgreSQL wire protocol.

Rust, Apache

pgsqlite lets you use PostgreSQL tools and libraries with SQLite databases. 

PostgreSQL protocol for SQLite databases. Turn any SQLite database into a PostgreSQL server that your existing tools and applications can connect to.

⚠️ WARNING: Experimental Project This is an experimental project and is not yet ready for production use. It is under active development and may contain bugs, incomplete features, or breaking changes.


 


Thursday, July 24, 2025

Agile Kanban method

Kanban (development) - Wikipedia

Kanban (Japanese: 看板, meaning signboard or billboard) is a lean method to manage and improve work across human systems. This approach aims to manage work by balancing demands with available capacity, and by improving the handling of system-level bottlenecks.

Work items are visualized to give participants a view of progress and process, from start to finish—usually via a kanban board. Work is pulled as capacity permits, rather than work being pushed into the process when requested.

brief video:

The Kanban Method | David J Anderson | Kanban Experts Series - YouTube 12 min

"evolutionary approach to change"

books:

free download book
Essential Kanban Condensed - Kanban Books


Amazon.com: Kanban: Successful Evolutionary Change for Your Technology Business: 9780984521401: David J. Anderson, Donald G Reinertsen: Books

videos:

David Anderson - Kanban - An Alternative Path to Agility - 2013 COHAA The Path to Agility Conference - YouTube 1h 13min


Brave Search API, for AI

Brave Search API | Brave

Power your AI with the world's largest Web search API



free option:
  • 1 query/second
  • Up to 5,000 queries/month

Wednesday, July 23, 2025

AI Data centers: Oracle, OpenAI, $30B/year


a really big deal for Oracle, and OpenAI
but who is paying this bill?
It certainly is not Microsoft.

OpenAI agreed to pay Oracle $30B a year for data center services | TechCrunch

"Oracle collectively sold $24.5 billion worth of cloud services in its fiscal 2025 to all customers combined,

OpenAI has now explained that this Oracle deal is for 4.5 gigawatts of capacity as part of Stargate, the $500 billion data-center-building project OpenAI, Oracle, and SoftBank announced in January. (Apparently, the $30 billion deal does not involve SoftBank.)

The WSJ reports 4.5 gigawatts is the equivalent of two Hoover Dams, enough power for about four million homes."


The news caused Oracle’s stock to hit an all-time high, making its founder and CTO, Larry Ellison, the second richest person in the world, according to Bloomberg.


Azure AI Foundry vs Azure OpenAI

Microsoft is expanding AI (LLMs) models offerings beyond OpenAI,
so a new service "Azure AI Foundry" is introduced, 
that includes Azure OpenAI, as well as some other, mostly open models.

Essentially, Microsoft's alternative for Amazon (AWS) Bedrock service.

Technically, "Azure AI Foundry" is renamed and extended "Azure AI Studio".

And yes, there is also "Google AI Studio". 

Yes, it is complicated and confusing, as usual.

One needs AI to use AI.

What is Azure AI Foundry? - Azure AI Foundry | Microsoft Learn

Azure AI Foundry is a comprehensive platform for developing and deploying AI solutions,
while Azure OpenAI Service provides access to OpenAI's powerful language models within the Azure ecosystem.

Azure AI Foundry builds upon Azure OpenAI, incorporating it and other models into a broader platform for AI development. Essentially, Azure OpenAI is a key component of Azure AI Foundry.





Tuesday, July 22, 2025

Agile vs Scrum vs Kanban

Scrum in Agile: A Deep Dive into Agile Methodologies | Atlassian

Agile is a project management philosophy that employs a set of principles and values to help software teams respond to change. Agile teams value individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a plan. These values were set down in the Agile Manifesto along with 12 principles behind the manifesto.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.


Here’s a condensed version of the Agile Manifesto's 12 principles, each restated in 3 words or fewer:
  1. Customer satisfaction Deliver value early
  2. Welcome change Embrace changing needs
  3. Frequent delivery Ship often
  4. Business collaboration Work together
  5. Motivated individuals Trust teams
  6. Face-to-face conversation Talk directly
  7. Working software Value functionality
  8. Sustainable development Maintain pace
  9. Technical excellence Prioritize quality
  10. Simplicity Do less
  11. Self-organizing teams Empower teams
  12. Reflect and adjust Improve continuously



Agile doesn’t have any set rules, while scrum has quite a few! If you are seeking a framework that can guide you on your way to more agility, choosing scrum is a strong start.

Scrum is an agile framework that helps teams structure their work into short development cycles called sprints. Scrum teams commit to shipping work at the end of each sprint and adopt practices and a team structure that helps them achieve this cadence. Scrum takes the agile principles one step further, creating structure that helps teams live the agile principles in their day-to-day work. Scrum is a well-documented agile framework that many teams can adopt without much disruption.

Kanban is an agile framework that helps teams deliver work on a continuous basis. Kanban teams organize their work on a kanban board with cards, columns, WIP limits, and specific commitment and delivery points. Kanban is best for knowledge work, where the product or service is largely invisible. Kanban helps teams visualize their and make strides day after day.













Write the Product Vision by martinfowler






  • HiPPO — Highest Paid Person’s Opinion
  • RHiNO — Really High-value, New Opportunity
  • ZEbRA — Zero Evidence, but Really Arrogant
  • WoLF — Works on Latest Fire
  • Seagull Management





Dog breeds sizes estimated with Fibonacci numbers (with AI)

Dog BreedAvg. Weight (lbs)Closest Fibonacci Point
Chihuahua~51
Dachshund~203
Poodle (Standard)~6013
Borzoi~9021
Border Collie~458
German Shepherd~7513
Labrador Retriever~7013
Saint Bernard~14021
Great Dane~17521

Agile Scrum Events Calendar





Agile Kanban Story To Do Work In Progress Verify And Release Ready | PowerPoint Presentation Pictures | PPT Slide Template | PPT Examples Professional




AI MCP tool: Context7


Context7 - Up-to-date documentation for LLMs and AI code editors
Up-to-date documentation for LLMs and AI code editors

Copy the latest docs and code for any library — paste into Cursor, Claude, or other LLMs.


24496 libraries

upstash/context7: Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors @GitHub

Install in VS Code

Install in VS Code (npx) Install in VS Code Insiders (npx)

Add this to your VS Code MCP config file. See VS Code MCP docs for more info.

VS Code Remote Server Connection

"mcp": {
  "servers": {
    "context7": {
      "type": "http",
      "url": "https://mcp.context7.com/mcp"
    }
  }
}


Monday, July 21, 2025

n8n: Workflow Automation tool (vs Zapier)

podcast

Powerful Workflow Automation Software & Tools - n8n

Flexible AI workflow automation for technical teams

Build with the precision of code or the speed of drag-n-drop. Host with on-prem control or in-the-cloud convenience. n8n gives you more freedom to implement multi-step AI agents and integrate apps than any other tool.




Sunday, July 20, 2025

Azure OpenAI API: REST & SDK

OpenAI API is almost "industry standard" since other AI API providers often provide similar or same interface. 

But that API is also changing over time, so instead of "completion" interface from two years ago, last year it become "chat completions", and now is "responses". 

What does it mean? To get new features, we often need to change way of calling AI APIs,
either using REST directly or SDK when available for selected programming language.

Azure OpenAI

While OpenAI is hosted on Azure, and its API is available directly from OpenAI, or from Azure OpenAI.
And that is changing too.

Until recently, the feature was called Azure OpenAI, and was parallel to "Microsoft native" Azure AI.
Now, there is "Azure AI Foundry" that has collection of AI services and models, including OpenAI,
but also some other third-party models and Microsoft's own AI services.

Indirectly, this is response to AWS AI competition Amazon Bedrock that has similar structure, 
and hosts Anthropic Claude and other third party models. Competition is good.

Now, setting up OpenAI API on Azure is not automatic. It requires deliberate deployment of select models, and setting up access security methods, and there is a lot of options there. Not easy.

And Azure OpenAI API documentation, while existing, is less than complete.
In particular, examples do not include recent "responses" style of OpenAI API calling style.

The good thing is that original OpenAI SDK (at least Python and JavaScript)
can be used directly with Azure deployments.

Here are a few working examples in various languages, with REST and SDK where available.

Python

azure_openai_sdk_class.py

import os
from openai import AzureOpenAI

class AzureOpenaiSdkClient:
    def __init__(self,
                 endpoint=None,
                 api_key=None,
                 deployment="gpt-4.1-mini",
                 api_version="2025-04-01-preview"):
        self.endpoint = endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
        self.api_key = api_key or os.environ.get("AZURE_OPENAI_API_KEY")
        self.deployment = deployment
        self.api_version = api_version
        self.model = deployment
       
        self.client = AzureOpenAI(
            azure_endpoint=self.endpoint,
            api_version=self.api_version,
            api_key=self.api_key,
        )

    def responses_text(self, input: str, model2: str = None) -> str:
        model_to_use = model2 if model2 is not None else self.model
        response = self.client.responses.create(
            model=model_to_use,
            input=input,
        )
        # print(response.model_dump_json(indent=2))
        text = response.output[0].content[0].text
        # print(text)
        return text

    def chat_text(self, input: str, model2: str = None) -> str:
        model_to_use = model2 if model2 is not None else self.model
        chat_prompt = [
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "You are a helpful AI assistant."
                    }
                ]
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": input
                    }
                ]
            },
        ]

        # Include speech result if speech is enabled
        messages = chat_prompt

        # Generate the completion
        result = self.client.chat.completions.create(
            model=model_to_use,
            messages=messages,
            max_tokens=800,
            temperature=1,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0,
            stop=None,
            stream=False
        )
        # print(result.to_json())
        text = result.choices[0].message.content
        # print(text)
        return text

test.py

from azure_openai_sdk_class import AzureOpenaiSdkClient

def main():
    # Create client with default parameters (from environment variables)
    client = AzureOpenaiSdkClient()
   
    prompt = 'how tall is k2?'
    print('azure openai, prompt:', prompt)

    chat_text = client.chat_text(prompt)
    print('chat.completions:', chat_text)
   
    resp_text = client.responses_text(prompt)
    print('responses:', resp_text)

if __name__ == "__main__":
    main()

azure_openai_rest_class.py

import os
import requests
# import dotenv
# dotenv.load_dotenv()

class AzureOpenaiRestClient:
    def __init__(self,
                 endpoint=None,
                 api_key=None,
                 deployment="gpt-4.1-mini",
                 api_version="2025-04-01-preview"):
        self.endpoint = endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
        self.api_key = api_key or os.environ.get("AZURE_OPENAI_API_KEY")
        self.deployment = deployment
        self.api_version = api_version
        self.model = deployment

    def http_post(self, url, headers, body):
        response = requests.post(url, headers=headers, json=body)
        response.raise_for_status()  # Raises an HTTPError for bad responses
        return response.json()

    def chat(self, input):
        url = f"{self.endpoint}/openai/deployments/{self.deployment}/chat/completions?api-version={self.api_version}"
        body = {
            "messages": [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": input},
            ],
            "max_tokens": 800,
            "temperature": 1,
            "top_p": 1,
            "frequency_penalty": 0,
            "presence_penalty": 0,
            "stop": None
        }
        headers = {
            "Content-Type": "application/json",
            "api-key": self.api_key
        }
        return self.http_post(url, headers, body)

    def extract_chat_content(self, result):
        return result["choices"][0]["message"]["content"]

    def chat_text(self, input: str) -> str:
        return self.extract_chat_content(self.chat(input))

    def responses(self, user_content):
        data = {
            "model": self.model,
            "input": user_content
        }
        url = f"{self.endpoint}/openai/responses?api-version={self.api_version}"
        headers = {
            "Content-Type": "application/json",
            "api-key": self.api_key
        }
        return self.http_post(url, headers, data)

    def extract_responses_text(self, result):
        return result["output"][0]["content"][0]["text"]

    def responses_text(self, input: str) -> str:
        return self.extract_responses_text(self.responses(input))

test.py

from azure_openai_rest_class import AzureOpenaiRestClient

def main():
    try:
        # Create client with default parameters (from environment variables)
        client = AzureOpenaiRestClient()
       
        prompt = 'how tall is k2?'
        print('prompt: ', prompt)

        chat_text = client.chat_text(prompt)
        print('chat: ', chat_text)

        resp_text = client.responses_text(prompt)
        print('responses: ', resp_text)

    except Exception as err:
        print(f"error: {err}")

main()

JavaScript

azure-openai-sdk-class.js

import { AzureOpenAI } from "openai";
// import dotenv from "dotenv";
// dotenv.config();

export class AzureOpenaiSdkClient {
    constructor(
        endpoint = process.env["AZURE_OPENAI_ENDPOINT"],
        apiKey = process.env["AZURE_OPENAI_API_KEY"],
        deployment = "gpt-4.1-mini",
        apiVersion = "2025-04-01-preview"
    ) {
        this.endpoint = endpoint;
        this.apiKey = apiKey;
        this.deployment = deployment;
        this.apiVersion = apiVersion;
        this.model = deployment;
       
        this.client = new AzureOpenAI({
            endpoint: this.endpoint,
            apiKey: this.apiKey,
            apiVersion: this.apiVersion,
            deployment: this.deployment
        });
    }

    async responsesText(input, model2 = null) {
        const modelToUse = model2 !== null ? model2 : this.model;
        const response = await this.client.responses.create({
            model: modelToUse,
            input: input,
        });
        // console.log(JSON.stringify(response, null, 2));
        const text = response.output[0].content[0].text;
        // console.log(text);
        return text;
    }

    async chatText(input, model2 = null) {
        const modelToUse = model2 !== null ? model2 : this.model;
        const chatPrompt = [
            {
                role: "system",
                content: [
                    {
                        type: "text",
                        text: "You are a helpful AI assistant."
                    }
                ]
            },
            {
                role: "user",
                content: [
                    {
                        type: "text",
                        text: input
                    }
                ]
            }
        ];
        const messages = chatPrompt;
        // Generate the completion
        const result = await this.client.chat.completions.create({
            model: modelToUse,
            messages: messages,
            max_tokens: 800,
            temperature: 1,
            top_p: 1,
            frequency_penalty: 0,
            presence_penalty: 0,
            stop: null,
            stream: false
        });
        // console.log(JSON.stringify(result, null, 2));
        const text = result.choices[0].message.content;
        // console.log(text);
        return text;
    }
}

test.js

import { AzureOpenaiSdkClient } from './azure-openai-sdk-class.js';

async function main() {
    // Create client with default parameters (from environment variables)
    const client = new AzureOpenaiSdkClient();
   
    const prompt = 'how tall is k2?';
    console.log('azure openai, prompt:', prompt);
   
    const chatText = await client.chatText(prompt);
    console.log('chat.completions:', chatText);
   
    const respText = await client.responsesText(prompt);
    console.log('responses:', respText);
}

main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

azure-openai-rest-class.js

// import dotenv from "dotenv";
// dotenv.config();

export class AzureOpenaiRestClient {
    constructor(
        endpoint = process.env["AZURE_OPENAI_ENDPOINT"],
        apiKey = process.env["AZURE_OPENAI_API_KEY"],
        deployment = "gpt-4.1-mini",
        apiVersion = "2025-04-01-preview"
    ) {
        this.endpoint = endpoint;
        this.apiKey = apiKey;
        this.deployment = deployment;
        this.apiVersion = apiVersion;
        this.model = deployment;
    }

    async httpPostJson(url, headers, body) {
        const response = await fetch(url, {
            method: "POST",
            headers,
            body: JSON.stringify(body)
        });
        if (!response.ok) {
            throw new Error(`HTTP error! status: ${response.status}`);
        }
        return await response.json();
    }

    async chat(input) {
        const url = `${this.endpoint}/openai/deployments/${this.deployment}/chat/completions?api-version=${this.apiVersion}`;
        const body = {
            messages: [
                { role: "system", content: "You are a helpful assistant." },
                { role: "user", content: input },
            ],
            max_tokens: 800,
            temperature: 1,
            top_p: 1,
            frequency_penalty: 0,
            presence_penalty: 0,
            stop: null
        };
        const headers = {
            "Content-Type": "application/json",
            "api-key": this.apiKey
        };
        return await this.httpPostJson(url, headers, body);
    }

    extractChatContent(result) {
        return result.choices[0].message.content;
    }

    async chatText(input) {
        const result = await this.chat(input);
        return this.extractChatContent(result);
    }

    async responses(userContent) {
        const data = {
            model: this.model,
            input: userContent
        };
        const url = `${this.endpoint}/openai/responses?api-version=${this.apiVersion}`;
        const headers = {
            "Content-Type": "application/json",
            "api-key": this.apiKey
        };
        return await this.httpPostJson(url, headers, data);
    }

    extractResponsesText(result) {
        return result.output[0].content[0].text;
    }

    async responsesText(input) {
        const result = await this.responses(input);
        return this.extractResponsesText(result);
    }
}

test.js

import { AzureOpenaiSdkClient } from './azure-openai-sdk-class.js';

async function main() {
    // Create client with default parameters (from environment variables)
    const client = new AzureOpenaiSdkClient();
   
    const prompt = 'how tall is k2?';
    console.log('azure openai, prompt:', prompt);
   
    const chatText = await client.chatText(prompt);
    console.log('chat.completions:', chatText);
   
    const respText = await client.responsesText(prompt);
    console.log('responses:', respText);
}

main().catch((err) => {
    console.error("The sample encountered an error:", err);
});